

Appendix I: Passing Arguments into Functions

Sepehr Naimi

www.NicerLand.com

http://www.nicerland.com/

There are different ways to pass arguments (parameters) to functions. Some of them are:

 through registers

 through memory using references

 using stack

I.1: Passing arguments through registers
In the following program the BIGGER function gets two values through R21 and R22. After

comparing R21 and R22, it returns the bigger value through R21.

Program I-1

 LDI R16,HIGH(RAMEND) ; SP = RAMEND
 OUT SPH,R16
 LDI R16,LOW(RAMEND)
 OUT SPL,R16

 LDI R21,5 ; R21 = 5
 LDI R22,7 ; R22 = 7
 CALL BIGGER
HERE:
 RJMP HERE

 ; =======================================
 ; bigger returns the bigger value
 ; parameters:
 ; R21 and R22: the values to be compared
 ; returns:
 ; R21: containing the bigger value
 ; =======================================
BIGGER:
 CP R21, R22
 BRSH L1
 MOV R21, R22
L1: RET

This is a fast way of passing arguments to the function.

I.2: Passing through memory using references

We can store the data in memory and pass its address through a register. In the following

program, the address of a string is passed to the function through the Z register. The string ends with 0.

The function puts the contents of the string on PORTB until it reaches 0.

Program I-2

 ;Initializing the stack pointer
 LDI R16,LOW(RAMEND)
 OUT SPL,R16
 LDI R16,HIGH(RAMEND)
 OUT SPH,R16

 ;Z = addr. of MYDATA
 LDI ZL,LOW(MYDATA<<1)
 LDI ZH,HIGH(MYDATA<<1)
 CALL MY_FUNC
HERE: RJMP HERE

MY_FUNC:
 LPM R20,Z+
 CPI R20,0 ;is 0 ?
 BREQ L_END ;return if it is 0
 OUT PORTB,R20
 RJMP MY_FUNC
L_END: RET ;return

MYDATA: .DB "Hello World",0 ;a zero ended string

In the following program the STR_LENGTH function gets the address of a zero-ended string

through Z and returns the length of the string through R20.

Program I-3

 ; =======================================
 ; STR_LENGTH returns the length of string
 ; parameters:
 ; Z: address of the string
 ; returns:
 ; r0: the length of string
 ; =======================================
STR_LENGTH:
 LDI R20, 0 ; use R20 as string length counter
L_BEGIN:
 LD R20, [Z+] ; fetch a character from string
 CPI R20, 0
 BREQ L_END ; return if character is null (end of string)
 INC R20 ; increment the counter
 JMP L_BEGIN
L_END: RET

I.3: Passing arguments through stack

Passing through the stack is a flexible way of passing arguments. To do so, the arguments are

pushed onto the stack just before calling the function and popped off after returning.

This method of passing arguments is used in x86 computers because they have very few general

purpose registers. In AVR CPU, the arguments are passed in registers. If the arguments are more than

registers, the rest are passed on the stack.

It is important to remember that after returning from the call, the caller must clear the arguments

on the stack.

I.4: AVR Procedure Call Standard

AVR provides a standard for implementing the functions and the function calls so that the codes

made by different compilers and different programmers can work with each other. Some of the rules of

the standard are:

 The arguments must be sent through R25 to R8. The left most argument goes to R25 and R24,

and the next arguments go respectively to the next registers.

 An even number of registers are set aside for each argument. So, for passing a character

argument, two registers are used. To pass an int argument, two registers are also used, and 4

registers are used to pass a long argument.

 The return value must be returned in R25 through R18 depending on the size of return value.

 The functions can use R2 to R17, R28 and R29. But their values must be saved upon entering

the function and restored before returning. To do so, we push the registers before using them

and pop them before returning from the function.

 The functions can freely use R18 to R27, R30, and R31. Functions have no responsibilities

about the values of these registers. So, if there is a valuable value in each of these registers,

they must be saved before calling a function, and restored after returning. To do so, we push

the registers before calling the functions and pop them after returning from the function.

 The AVR C compilers assume that R1 contains 0. So, if you change the value of R1, you must

clear R1 when your code ends.

 The AVR compilers use R0 as a temporary register. So, if the value of R0 is changed in an

assembly code, R0 must be saved before changing and then restored afterward.

Register Function The caller

R0 Save and restore if using Save and restore if using

R1 Must clear before returning Must clear before calling

R2-R17, R28, R29 Save and restore if using Can freely use

R18-R27, R0, R31 Can freely use Save and restore if using
Table I-1: Summery of the register interfaces between C and Assembly (Copied from Atmel AT1886)

In Program I-4 the above rules are considered. The delay_ms function gets a byte argument

through R24 (R24 and R25 are set aside to be even). It saves and restores R16 and R17 using stack.

Program I-4

 LDI R16,HIGH(RAMEND)
OUT SPH,R16

 LDI R16,LOW(RAMEND)
 OUT SPL,R16

 LDI R24, 30
 CALL DELAY_MS ;WAIT 30 ms

HERE: RJMP HERE

 ; =======================================
 ; DELAY_MS waits for a few milliseconds
 ; parameters:
 ; r0: the amount of wait in milliseconds
 ; returns:
 ; none
 ; =======================================

DELAY_MS:
 PUSH R16 ;save R16
 PUSH R17 ;save R17

D_L0: LDI R17, 100
D_L1: LDI R16, 40
D_L2: NOP
 DEC R16
 BRNE D_L2
 DEC R17
 BRNE D_L1
 DEC R24
 BRNE D_L0

 POP R17 ;restore R17
 POP R16 ;restore R16
 RET

